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Outline

• Background
– Solid Polymer vs. Gel Polymer Ion Transport
– Lithium ion transport vs. Proton transport.
– Common features for Lithium Polymer batteries 

and PEMFC’s.
• Polymer design & Synthesis.
• Preliminary Results
• Future schedule and testing development



Liquids vs. Gels vs. Dry Polymers
Transport mechanisms differ

(blue: polymer chain; red: cross-linker; black: solvent)
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polymer. Need 850C for EV performance
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Network Backbone may be polymer 
or inorganic. Free liquid moves 
with ions. Operates at ambient temp.

Anions may be tethered to polymer backbone by means of side chains.
Molecular structure determines morphology and properties.



Fuel Cell Membranes
Microscopic to Macroscopic

Anions tethered to polymer. Cations (H+, Na+)
are  mobile and solvated by water. 
Molecular structure determines morphology 
and formation of ionic, water-rich clusters.



Fuel Cell Composite Electrodes.
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Gas Phase •Transport of gases and 
ions through crowded
polymer-solid interfaces
where the electrolyte 
mobility  is restricted.
• Polyelectrolytes close 
to glassy phase in 
presence of electrode 
surfaces.
•Poor ion transport and 
dis-bondment.
•Ion activity?



Composite Electrodes in Li Ion Cells
Lithium ions in crowded neighborhoods
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Ions plus solvent (EC/DMC, DME) – Unstable!
Leads to gas generation and polymer formation

= cathode particle= Conducting carbon particle



Mechanisms of Ion Mobility in “Dry”
Polymers - Amorphous Phase
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New Polymer Architectures for Imidazole
Solvating groups, Anion Mobility and 

Flexibility
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•Attach anions and solvating
groups by grafting –control 
nature and concentration.
•Use nature (pdo/bdo) and 
length of side chain
to control chain mobility.
•Backbone (PE, polystyrene,
polysiloxane) and cross-link
density to control mechanical 
& morphological properties.
•Degradation results in 
Release of small fragments
- facilitates failure analysis.



Imidazole Proton Conductivity



Grotthus Proton Transfer?



Oxygen Separation Membrane
exhibits stability to (per)oxygen

•Vinyl Imidazole used rather 
than vinyl pyridine.
•PolyvinylImidazole has high
Tg. Membrane is very selective
for O2 over N2.

Hiroyuki Nishide,* Yukihiro Tsukahara, and Eishun Tsuchida, 
J. Phys. Chem. B, 102 (44), 8766 -8770, 1998.



Hydrosilylation Chemistry Allows Grafting of 
Functions (Anions or Imidazoles) and Cross-

linking for Mechanical Properties.
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X-Linked Network
- may link different 
polymers to stabilize 
blends for cost savings 
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centers in this chemistry.
-Hydrosilation is 
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better uniformity and 
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Prepolymers and Salts
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New salts arriving from DesMarteau Group (Clemson)



Conductivity of Li+

Polyelectrolytes 
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•Theoretical models
predict  optimum
ion concentration
to be half the 
optimum  for binary
salts.
(Ratner JES 148,
A858 (2001))

•Low salt concn. gives
lower cost pathway.
•Lower Tg at higher
ion concn. wanted for
high conductivity. 
•Side chain lengths 
and flexibility not 
optimized.Tg: 80 = -54oC; 45 = -53oC; 25 = -35oC



Synthesis of Prepolymers & Salts
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Conductivities of Lithium 
Polyelectrolytes
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DSC results of PETMO4 
based single ion conductors
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Uniformity of the Membrane is Critical!
Rheology(DMTA) and AFM probe Membrane 
Properties and Uniformity – PEPE3+ 10% AGE
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Rapid growth of dendrites observed in Li/Li cells 
– due to thick membrane (400µm), high x-link density that degrades

transport properties and non-uniformity from non-random polymer



Comb Structures allow Increase of Mechanical strength 
without Loss of Ion transport Properties?

PEPE3 (no salt) with different amount of crosslinker
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PEPE3/LiTFSI 20:1 with different amounts 
of hydrophobic SiO2 R805 filler
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Combine X-link Chemistry with fillers for Increased 
Mechanical Properties

Different Surface Interactions influence Polymer Mobility 
(Temperature Sweep in Compression (10Hz))
Fumed SiO2 -A200 –OH hydrophilic groups

R805 – Octyl hydrophobic groups
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Note increase in Tg due to presence of salt (cf. X-link with no salt).



Single-ion Conductor Gels.
Add solvent to increase Ion transport to 

Useful Levels.
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Imidazoles and Long Tethers good for Hydrogels
- Heller

Imidazole provides stability
and faster kinetics.
Long tether provides faster diffusion
and leads to order of magnitude
Increas in current.

Hydrogels used for bionsensors,
medical applications, etc.



New Opportunities for Old 
Technologies?
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Next Steps

• Prepare polyelectrolyte acid forms (usually 
from Na+ form)

• Measure “dry” conductivity, Tg-values and 
mechanical properties.

• Dope with imidazole, pyridine and water.
– Measure conductivity, Tg and rheology.

• Examine polymer stability.
• Attach Imidazole to polyelectrolyte and 

measure properties.



Next Phase

• Optimize polyelectrolyte structure for transport
– Concentration of imidazole, anions
– Tether length and flexibility
– Backbone and cross-linking

• Examine material properties with carbon filler 
for potential MEA construction.

• Develop more stability data.
• Initiate development of structure-function 

relationships
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